Destressing drones operations by model-based navigation

Jan Skaloud, Gabriel Laupre, Aman Sharma 2022-12-07

The received GPS signal is 1/10th of 1 millionth of 1 billionth of a Watt.

Agenda

- Background
- Calibration
- Real-time

t, X(t), P(t)

Khaghani, Skaloud (2016) Autonomous vehicle dynamic model based navigation for small UAVs, J. of Navigation

Khaghani, Skaloud (2018) Assessment of VDM-based autonomous navigation of a UAV under operational conditions, Robot. & autonom. syst EPFL

• Q1: Calibration of model coefficients

- Without initial knowledge?
- In-flight data only?

• Q2: Real-time

- I/O handling (sensors, auto-pilot)?
- Sensor-fusion (speed, observability)?
- Q3: Performance
 - Autonomous navigation (GNSS outage)?
 - Repeatability?

- 0 Calibration w. ZERO priors (per vehicle-type)
 - Input 1: IMU,GNSS, airspeed, ctrl commands
 - Input 2: precise trajectory (INS/PPK-GNSS)
- Estimate
 - Wind (KF)
 - Moment coefficients (RLS)
 - Force coefficients (RLS)

- Req.
 - IMU >\$50,

 Challenges Number of unknowns Few % of useful data 		model pa	model param No.	
	Linear estimators	Reduced	General	
	1. W ind	4	4	
	2. Moments	11	20	
	3. Forces	10	24	

- For each (linear) estimator
 - Evaluate observability Grammian W for each epoch k (recursively)
 - Perform orthogonal decomposition of state-space (new base-vectors)
 - Estimate the states (in the new base) only when observable (partial-update)

9

- 1st Calibration (per unit)
 - optimal smoother INS/GNSS
- P used as a prior

P after smoothing, IGN8

Engraz

6°33'E

AF i7 AF_i6u

46

• Improvements factors: VDM-IMU vs. INS

			Scovel Scrivenski	STIM318 100 SEC: NOSSEI 100000000 PN::: 04072:44000: SEI PN::: 04072:44000: SEI FI::: 04072:44000: SEI FI:: 04072:4400: SEI FI:: 04072:44000: SEI FI:: 04072:44000: SEI FI:: 04072:4400: SEI FI:: 04072:4400: SEI FI:: 04072:4400:
		ADIS-16475 ~500\$	NavChip (calibrated) ~600\$	STIM318 (~6000\$)
ages	2	2 - 5x	1 - 8x	1 - 3x
S out; (min)	5	_*	>10x	6х
GNS	>5	_*	_*	>10x

Perspectives : model dynamic navigation – platforms & methods

- real-time
- model structure adaptation
- estimation strategies

Laupre & Skaloud (2021) Model-Based Navigation of Delta-Wing UAV-In-Flight Calibration and Autonomous Performance. EU J. Navigation

