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Destressing drones operations 
by model-based navigation
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The received GPS signal is 1/10th of 1 millionth of 1 billionth of a Watt.



Agenda

• Background
• Calibration
• Real-time   
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Selected contribution < 2020
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Khaghani, Skaloud (2016) Autonomous vehicle dynamic model based navigation for small UAVs, J. of Navigation 
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Selected contribution < 2020 drone’s operation safety (offline)

Khaghani, Skaloud (2018) Assessment of VDM-based autonomous navigation of a UAV under operational conditions, Robot. & autonom. syst.
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• Q1: Calibration of model coefficients
• Without initial knowledge?
• In-flight data only? 

• Q2: Real-time
• I/O handling (sensors, auto-pilot)?
• Sensor-fusion (speed, observability)?

• Q3: Performance 
• Autonomous navigation (GNSS outage)?
• Repeatability?
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• 0 Calibration w. ZERO priors (per vehicle-type)
• Input 1: IMU,GNSS, airspeed, ctrl commands  
• Input 2: precise trajectory (INS/PPK-GNSS) 

• Estimate
• Wind (KF)
• Moment coefficients (RLS)
• Force coefficients (RLS)

• Req. 
• IMU >$50, 
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• Challenges 
• Number of unknowns
• Few % of useful data
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model param No.
Linear estimators Reduced General
1. Wind 4 4
2. Moments 11 20
3. Forces 10 24

• For each (linear) estimator

• Evaluate observability Grammian𝑊 for each epoch 𝑘 (recursively)

• Perform orthogonal decomposition of state-space (new base-vectors)

• Estimate the states (in the new base) only when observable (partial-update)
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• 1st Calibration (per unit)
• optimal smoother INS/GNSS

• 𝑃 used as a prior

P after smoothing, IGN8



11

Camera
IMUs

Autopilot Companion
Computer

Sensors

PX4 DATA
Manager

Q2



12

IMU errors 
determination

Pre-flight
calibration

Takeoff

Calibration
maneuvers

INS/GNSS
Initialization/

alignment

Flight
Mission

VDMc Initialization
phase

VDMc Calibration 
mode

Full-states

VDMc Refinement 
mode

Reduced-states

GNSS Outage
RTL

Landing

VDMc Outage mode
Frozen-states

Ground optional 
IMU calibration

Start of INS/GNSS
software after in flight alignment

GiiNAV no longer required
could be shut down

Calibration and refinement of
the model parameters during
calibration phase of the flight

VDMc normal operational mode

GNSS outage event and "return
to land" safty maneuver

Optional

Flight phases Software Comment / legend



13

Q3
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Figure 7. Evolution of horizontal position error (magnitude) after initialization for Tini = [0, 100] s in flights AF_i7 (left) and AF_i6x (right).

Table 4. Start times (in minutes) of 2 minute-long GNSS outage within the application flights after take-off.

Flights GNSS outage start time [min]
AP_i7 17 20 23 26
AP_i6x 12 14 16 18
AP_i6u 10 11 13 14

The statistics of the observed horizontal errors (magnitude) during VDM-based autonomous navigation are depicted in
Fig. 8. For each outage the central mark indicates the median, and the bar indicates the maximum error. For comparison,
a second evaluation is plotted on the same figure for inertial coasting (with barometer-height aiding) using the identical
sensor-error model. From the total of twelve cases the reduction of max. horizontal error for VDM with respect to inertial
coasting is very significant on 3 occasions (more than 10⇥), and significant on 3 others (more than 5⇥). In the rest of 6
cases the improvement varies from 1.5⇥ to 2.5⇥.

VDM

INS

Figure 8. Horizontal-position errors (max. & median) during repetitive GNSS outages of 2 minutes for VDM and INS.

To observe furthermore the navigation performance improvement via the proposed VDM approach in one of the very
significant cases, the duration of the first GNSS outage in AF_i6u is increased to 6 minutes. The autonomous navigation
during this period is detailed in Fig. 9, for VDM (green), INS (red) and reference (blue). While the maximum horizontal
error in position is ⇠250 m for VDM, it is 18⇥ larger (⇠4.5 km) for the inertial coasting case.
For each application flight, Fig. 10 details the maximum and median errors in horizontal position during two GNSS
outages (each of 2 minutes) with partial (green) and with full (red) updates of the state-vector. Apart from one minor
exception, the position errors (as well as the velocity and attitude) are lower in all cases when the partial (rather than full)
updates are applied. Fig. 11 depicts the estimated position during some of the previously described GNSS outages in the
application flights AF_i7 and AF_i6u without (dashed red) and with (green) the use of partial filtering. The reference
trajectory is depicted in as a dotted blue line. The small exception of slightly higher positioning error with partial filtering
is related to the 1st simulated GNSS outage in the flight AF_i6u. There the error in heading is higher with the partial-
Schmidt implementation, causing slightly larger deviation in the horizontal position after the nearly 1 km long straight
line as shown in Fig. 11(b).
In all cases the trajectory with the “consider” states is smoother than the trajectory with updates in position. Such differ-
ences intensify towards the end of the outage period when the confidence in position is lower. A smooth and continuous
estimate of position with higher confidence level is more suitable for the guidance and control algorithms within the
autopilot (DoT, 2015), especially when executing a fail-safe action such as return to land.
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Figure 4. Experimental flights references (blue): a) CF_i8, b) AF_i7, c) AF_i6x and d) AF_i6u, beginning of the trajectory (red triangle)

there is diminished health”, we conclude that even when the original filter performed adequately within the performed
course, its scaled version is in a much better shape for a real marathon.

6.2. Self-calibration. During the self-calibration (flight CF_i8), the differential carrier-phase GNSS approach PPK,
is used for position and velocity updates during the whole trajectory. Such improved accuracy of aiding is perceived as
important for the estimation of auxiliary states related to aerodynamic parameters. Considered as time invariant within the
flight, their best estimate is obtained via an optimal forward-backward smoother. The initial aerodynamic coefficients are
adapted from a similar shaped platform (Ducard, 2009) to the drone used for the experimental flights (Sec. 5). As their
values were obtained for a different payload by Khaghani and Skaloud (2018), their initial uncertainties are set to 5% of
their initial values to allow for possible variations. It should be stressed that the observability of parameters depends on
the maneuvers (Laupré and Skaloud, 2020). Therefore some high dynamic maneuvers are part of this flight. The use of
the optimal smoother further accentuates the existing structural correlations between the aerodynamic coefficients due to
the model (Sec. 2) while de-correlating them with other states as depicted in Fig. 5(b) and 5(c).

6.3. Parameter relations. The relations between model parameters are obtained by analyzing the corresponding sub-
bloc of the covariance matrix after smoothing (Psm). As depicted within the red square in Fig. 5(c), the parameters outside
the main diagonal in yellow are correlated by more than 90 %. Five highly correlated pairs were selected for regression
analysis. The resulting linear relations between the selected pairs are detailed in Tab. 3. As the force parameter CFy1 is
correlated to CFT 3 as well as to CFx1, the model is reduced by four coefficients.

Table 3. Proposed correlated pairs for model reduction and their linear relations

Param. pair Correlation Cj sij Ci oij
CFT1 - CFT2 0.97 CFT2 = -40.9154⇥ CFT1 -0.202
CFT 3 - CFx1 0.98 CFx1 = 0.0564⇥ CFT3 -0.412
CFy1 - CFT 3 0.98 CFy1 = -0.0006⇥ CFT3 -0.247
CFx1 - CFy1 0.99 CFx1 = 0.0336⇥ CFy1 -0.259
CMy1 - CMy↵ 0.85 CMy↵ = 0.820⇥ CMy1 -1.552
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Figure 4. Experimental flights references (blue): a) CF_i8, b) AF_i7, c) AF_i6x and d) AF_i6u, beginning of the trajectory (red triangle)
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Figure 4. Experimental flights references (blue): a) CF_i8, b) AF_i7, c) AF_i6x and d) AF_i6u, beginning of the trajectory (red triangle)
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• Improvements factors: VDM-IMU  vs. INS  
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Perspectives :  model  dynamic navigation – platforms & methods 

Laupre & Skaloud (2021) Model-Based Navigation of Delta-Wing UAV-In-Flight Calibration and Autonomous Performance. EU J. Navigation
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• real-time
• model structure adaptation 
• estimation strategies


