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Motivation – UAV/MAV 

Dependence on:  
 
!  Waypoint /GNSS/ navigation  

"  (One) fragile signal of low power (-157 dBW) 
"  Removed by:   

!  Intentionally (e.g. anti-tracking L1,L3,L3,L4,L5), >7W 
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!  Non-intentionally 
"  RF interference on board  
"  External, e.g. communication lines, power lines, etc.   

 

GNSS signal absence fallback solutions 

!  Vision / texture & light dependency  
"  Great  – indoor, urban   
"  Limited  - forest, agriculture  
"  Not functioning – night, fog, snow, water  

!  Inertial / size & weight 
"  Murphy law in INS 

!  < 2010:  
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!  > 2010:  



Motivation – better autonomous performance  
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Nav/grade 
~5000 cm3 

~4.5 kg 
<0.01 °/h Tactical 

~2000 cm3 

~0.7 kg 
<1 °/h  

Low-cost 
 
 
 
~ 2 cm3 

~ 10 grams 
<10 °/h 

Geometry of redundant “R”-IMU  

!  RIMUs  
"  Not new, traditionally: safety critical 

applications, often 3 sensors/axis, high cost 

"  A. Pejsa (1974) proposed a first theory 
based on variance minimization 
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3 Platonic Solids  

"  S. Sukkarieh (2000) proposed a method 
based on information filter 

"  Sensor triads? 



Geometry of RIMU / design with triads 

S. Guerrier (2009). Improving Accuracy with Multiple Sensors: Study of 
Redundant MEMS-IMU/GPS Configurations. ION GNSS-09, Savannah, GA. 
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!  Approach based on partial redundancies (typically applied in 
geodetic networks) 
"  each observation i has associated zi (controllability) 
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!  Sensor triads + same precision: 
"   relative orientation is unimportant (analytically proven)  

 

y

z

x

y

z

x

Geometry of RIMU / impact of sensor failure 
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Fault Detection + Identification (FDI) 
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S. Guerrier, A. Waegli, J. Skaloud and M.-P. Victoria-Feser. 
Fault Detection and Isolation in Multiple MEMS-IMUs Configurations,  
in IEEE Transactions On Aerospace And Electronic Systems,  
vol. 48, p. 2015-2031, 2012. 

DRAFT 20

Fig. 10. Standford plot of the Mahalanobis distances’ based method (applied to MEMS gyros). The squares indicates the performance of the

isolation algorithm: success (green), error (red)

Fig. 11. Graphical comparison of performances between the parity space and the Mahalanobis based method

classical distances (i.e. parity space test statistics) do not follow �2

(9) while the Mahalanobis and robust distances

apparently do.

Finally, we compare the performances of the classical isolation algorithm with the approach presented in this

article. The results are summarized in Table I.

The results of the robust method and the method based on Mahalanobis distances are very similar. This can be

explained by the small proportion of outliers in this data set. Consequently, the maximum likelihood and the robust

estimators yield similar results, thus, b⌦?

ML

⇡ b⌦•
MCD

and v̄?

ML

⇡ v̄•
MCD

. In order to compare the performances of

the classical and robust estimation, we added perturbations to the original data. Indeed, 20% of the measurements

November 11, 2010 DRAFT

Noise reduction in RIMU  

Navigare, J.Skaloud, 1.4.2014 10 

A. Waegli, J. Skaloud, S. Guerrier, E. Pares, I. Colomina. 
Noise Reduction and Estimation in Multiple MEMS Inertial Systems,  
in Measurement Science and Technology,  
vol. 21, pp. 065201-065212, 2010. 

Noise Reduction and Estimation in Multiple Micro-Electro-Mechanical Inertial Systems6

The theoretical reduction of the noise level was verified by comparing the di↵erences

between the MEMS-IMU measurements and their best estimate to the reference values.

Thereafter, a parametric compensation was performed to remove systematic errors

in the MEMS-IMU measurements. Thus, the remaining di↵erences are assumed to

be composed of white noise only. The averaged noise of the MEMS-IMU gyros was

estimated to 0.0201 rad/s, whereas the noise level of their best estimate amounts to

0.0103 rad/s. Hence, the experimental noise reduction is of approximately 48.6% which

confirms the validity of the theoretical model. FIG. 5 illustrates these results graphically.

FIG. 6 shows the boxplot of residuals of the norm of the 4 MEMS-IMUs and of

synthetic IMU (i.e. the averaged norms of the MEMS-IMU measurements). It can be

observed that the variance of sensor MTi-14 is significantly di↵erent from the variance of

the other sensors. Moreover, this sensor is biased and introduces in consequence a bias in

the synthetic IMU. This example shows the limitation of the synthetic approach which

gives equal weights to each sensor since their precisions are assumed to be equivalent.

To reduce this limitation, section 5 proposes a method that weights measurements based

on their estimated variance.

Figure 6. Boxplots of the residuals of the norm of the 4 MEMS-IMUs and of the
synthetic IMU.

4. Direct Noise Estimation - Averaged volatilities

In the first approach, we assumed that the variance remains constant around the point

of interest in the interval containing 2T + 1 measurements. Thus, the variance at t can

!  Theory (constant variance) 

  

σ x̂
2 = wiσ i

2 = σ x
2

ni=1

n

∑

!  Practice 
"  Presence of “colored” noise 
"  Variance not const. in time 

  



Noise reduction in RIMU - ARMA/GARCH 

!  ARMA (Auto-Regressive Moving-Average) 
"  Remove the auto-correlated part  

!  GARCH (Generalized AR Conditional Heteroskedasticity) 
"  Estimates the variance   
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Least−squares  residuals

σσt with the ARMA residuals

σσt with the ARMA errors
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Figure 12. Variances computed with the ARMA errors and the ARMA residuals of
the Xsens MTi - G on the z-axis (above). Norm of the angular rate measurements of
the reference IMU (below)
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Figure 13. Boxplots of the residuals of the norm of the synthetic and of the weighted
synthetic IMU.

RIMU/GNSS (1): Synthetic IMU 
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#  Inertial error terms can not be back projected 
into the measurement space 
 $ not stochastically optimal 

% Applicable with standard GNSS/INS software 
% Defective sensor detection 
% Realistic estimation of noise 
% Simple realization 



RIMU/GNSS (2): Extended IMU 
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# Requires modification of GNSS/INS software 
# Requires knowledge of relative IMU orientation 

% Estimation of individual sensor errors 
% Defective sensor detection 
% Realistic estimation of noise 
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# Requires modification of GNSS/INS software 
#  Increased computational effort 

% Estimation of individual sensor errors 
% Defective sensor detection + realistic noise 
% Calibration of relative IMU orientation 

RIMU/GNSS (3): Constrained IMUs 



Development & testing – Xsens (R)IMUs 
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Single-IMU based INS/GPS  Redundant INS/GPS  Reference 

~150-300m pos. error 
after 700 m pure inertial  

~15m 
error 

PhD. Y. Stebler, 2012 

!  Mother board  
"  FPGA Geko, T. Kutler PhD @ EPFL / BFH 

!  Custom navigation board  
"  Up to 4 MEMS-IMU 
"  Sampling: 250–500 Hz  
"  Barometer  
"  Digital compass 
"  Internal/external GPS 
 

!  Synchronization  
"  scale: 1PPS -> Navchip 
"  bias: NMEA/ZDA, soft.  

RIMU - Geko4Nav (Intersense/BFH/EPFL) 
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n x 
Navchip IMU 



RIMU - Geko4Nav: Calibration & Performance  
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!  Offsets calibration  
"  Accelerometers: multi-position static calibration 
"  Gyroscopes: multi-position calibration on rotation table 

!  Error models   
"  GMWM estimator (outperforms Allan Variance analysis)  

Attitude Performance 
(smoothing) 

M.Sc. R. Mabillar 
!  Testing  

"  Dynamic  
"  Drone / reference AT  

!  Not-continuous   
"  Vehicle / reference IMU 

!  Continuous ->     

Conclusion – R(MEMS)IMU 

!  Geometry  
"  Sensor triads the relative geometry is not important 

unless sensor fails, which favors skew triads. (Many 
triads – geometry has minimal impact)  

!  Noise level 
"  Can be determined (adapted in KF) & suppressed 
"  ARMA/GARCH ideal but computationally demanding  

!  Processing  
"  Calibration: geometrically constrained  
"  Application: extended mechanization 
"  Results: higher performance, redundancy & integrity    

!  Is RIMU answer to drone’s navigation autonomy?     

Navigare, J.Skaloud, 1.4.2014 18 


