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!  Multi-rotor helicopters 
!  All rotors aligned in a plane 
!  Rotor axes perpendicular to that plane 
!  Max. take off weight ≈ 1.5 kg 
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Micro Aerial Vehicles (MAVs) 
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Jerome-de Bothezat Quadrotor  
‘Flying Octopus’ in 1922 

1.1. MICRO AERIAL VEHICLES (MAV) 3

wind and drift (Leishman, 2006, pg. 25). As a result of the poor perfor-
mance and changing interest of the military in other projects, this project
was finally canceled. During years of development, helicopters with a sin-
gle main rotor and a small tail rotor to compensate for the main rotor’s
torque – which we nowadays call “conventional” helicopter – have super-
seded multi-rotor systems, only with a few exceptions. This was most likely
caused by the increased complexity of multi-rotors at the time: Yet, building
and controlling two or more primary lifting rotors was even more di�cult
than controlling one rotor, a fact that seemed to evade many inventors and
constructors (Leishman (2006, pg. 6)).

Development of highly e�cient lithium-polymer batteries and electroni-
cally commutated electric motors, commonly known as “brushless” motors,
combined with the miniaturization of sensors, computing devices, and their
exponential growth of processing power in the past two decades paved the
way for the success of MAVs. Instead of having complex mechanics and gear-
boxes, some x-shaped frame with a motor on each corner, directly driving a
rotor became the only required mechanical parts. Their resistance against
crashes and the inherent safety of many small rotors, compared to one large
rotor, finally started the triumphant advance of multi-rotors – among hob-
byists first, before triggering the interest of the research community. How-
ever, as with the initial “Flying Octopus” of Bothezat, many (open) research
challenges remain for small multi-rotors, albeit their focus has shifted signif-
icantly. Nowadays, the mechanic parts are relatively simple, but the main
complexity lies in the electronics and even more in the necessary algorithms,

Figure 1.2: Probably the first multi-rotor, the so-called “Flying Octopus”, which
had its first flight in 1922. ((Leishman, 2006), c•National Park Service)

 © National Park Service 
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!  Degrees of freedom 
!  Coupled dynamics 
!  Fast dynamics 
!  Constant motion and  

inherent instability 
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Challenges for MAVs 

1.3. CHALLENGES FOR AUTONOMOUS MAVS 9

and roll angle) as well as one additional degree of freedom for its altitude.
This requires state estimation, control and planning to be performed in full
3 D space.

Coupled Dynamics: The type of MAV we study here, is an under-actuated
system. With the given geometry of the MAV, regardless of the number of
rotors, the forces and torques originating from the rotors only map to four
control inputs. As a result, the attitude has to be changed in order to move
the MAV forwards or sidewards. This in return changes the field of view
of onboard sensors interacting with the MAV’s environment like cameras or
distance sensors. This adds to the challenge of robust pose and motion esti-
mation.

Fast Dynamics: The fast un-damped dynamics of a MAV require at least
PD-control techniques for position control. Therefore, accurate velocity esti-
mates with a high update rate are essential. Proportional control techniques
with position information from relatively slow SLAM algorithms – as com-
monly used for ground vehicles – would quickly lead to oscillations, especially
in combination with unavoidable delays of state estimates. Thus, while the
agility of MAVs allows great versatility, it poses great research questions to
the estimation, control and planning problem.

Constant Motion and Inherent Instability: Compared to ground ve-
hicles, a MAV cannot simply stop to acquire sensor readings, when state
estimates arrive delayed or contain high uncertainty. While waiting for state
estimates or re-evaluation of uncertain estimates, the vehicle continues mov-
ing and further falsifies these estimates. As a result, this soon leads to oscilla-
tions and instability, accentuating the need of a fast and accurate estimation
process, as illustrated in Fig. 1.7

ground'robot'

MAV'

Figure 1.7: Comparison of vehicle dynamics: while a ground vehicle (left) can
always simply stop, a MAV (right) needs to permanently controlled due to its
unstable dynamics.

2.1. SYSTEM DESIGN AND REQUIREMENTS 21

higher level point of view, which are necessary for position control, trajectory
generation and trajectory tracking. We omit the aerodynamic e�ects here,
and will show how these can be handled in Section 2.3.
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Figure 2.1: Left: Setup depicting the vehicle body / IMU with respect to a world
reference frame. C 0̄

w

denotes an intermediate frame with a rotation of the yaw-
angle Â around z
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, while Ci

w

denotes the full attitude of the IMU-centered vehicle.
Right: hex-rotor used in this work, with according rotor turning directions.

The setup of an exemplary hex-rotor with the necessary coordinate frames
is depicted in Fig. 2.1. In addition to the fixed world frame, we define two
coordinate frames for the vehicle, which just di�er in their rotation: The body
frame of the vehicle “i”, centered around its inertial measurement unit (IMU),
and an intermediate frame “0̄”. Ci

w

=
#
x
i

y
i
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i

$
denotes the orientation

of the IMU frame expressed in the world frame, and C 0̄
w

=
#
x0̄ y0̄ z0̄

$

denotes the orientation of the vehicle by the yaw angle Â around z

w

. Angular
velocities Ê and angular accelerations Ê̇ are expressed in the IMU’s (body)
coordinate system.

MAV Dynamics

Essentially, all dynamics of the MAV depend on the rotational velocities n
i

of
the individual rotors. Here, we study the case where all rotors are aligned on a
plane and where their axes are parallel to the MAV body’s z-axis. The rotors
are furthermore assumed to have a fixed pitch angle. These requirements
are usually fulfilled for most robotic multi-rotor systems. We can write the
e�ects of the rotational velocities of the rotors on the resulting thrusts and
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!  Sensing payload (1g payload " ≈100 mW hovering power) 

 
!  Onboard processing power 

!  Wireless data-links: bandwidth, delay, QoS … 
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Challenges for MAVs 

NASA Ames Research Center/Tom Trower Ascending Technologies 
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Challenges Visualized 
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Challenges Visualized 
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Closed Loop Visual Navigation for MAVs 
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Components of an Autonomous MAV 

Planning Control 

State  
Estimation 

Perception 

position, velocity, attitude … 

uncertainty, required motion 

[Achtelik et al. IROS 2013] 
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A sensor classification attempt, considering 
framerate and drift 

desired compass 
… 

Main sensor setup 
for local stability 

Modular extension for 
multi-sensor self-calibration 
and state estimation 

[Weiss PhDThesis 2012] 
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!  Parallel Localization And Mapping (PTAM) 
!  Tracking and mapping in separate threads 
!  Originally designed for  

small workspaces 
!  Monocular vision  

approach  
" unknown, arbitrary  
translational scale 

!  Here: used as “black 
box” providing a “5D”  
pose 
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Localization: Keyframe Based Visual SLAM 

[Klein & Murray ISMAR07]  
[JFR 2011, ICRA 2012, JFR 2013]  
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!  IMU-sensor calibration and measurement scale are 
observable, given sufficient motion [Mirzaei, Kelly, Martinelli, Weiss]  
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State Estimation: Sensor Setup 
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!  Single sensor: 

 
 
!  Multiple sensors:  
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Measurement Delay Compensation 
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Sensor Fusion Integration  
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Results: Robustness to Disturbances 
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Results: PTAM / VSLAM  -- up to 4 m/s 

[Achtelik et al. IROS 2013] 
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Visual-Inertial SLAM sensor 
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Specs 

!  Vision:  Global Shutter Aptina MT9V034 (up to four) 
  Thermal Camera: FLIR Tau 640, 14 bit HDR 

!  IMU:   Analog Devices ADIS 16488/16448 
!  Calibration:  Camera-IMU fully calibrated & time-synchronized [1] 
!  FPGA:  XILINX Zynq 7020 

  SoC Dual-Core ARM Cortex A9 

!  Lighting:  LED flasher 
!  Interface:  GPS & Laser scanners  

!  I/O:   GigE, USB-powered (<10W) 
!  Weight:  130 g (incl. 2 cams + sensor mount) 

   
[1] P. Furgale et.al, “Unified Temporal and Spatial Calibration for Multi-Sensor Systems”, IROS 2013  
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!  Tightly-coupled keyframe-based 
visual-inertial SLAM [1] 

 

!  Tight integration of IMU allows 
highly dynamic motions and 
efficient outlier rejection.  

 
 

!  Realtime dense stereo-based 3D 
reconstruction 
!  Poses: ASLam [1] 
!  Stereo depth-map: ELAS [2] 
!  Mapping: Octomap [3] 

!  Efficient outlier rejection based on 
photoconsistency 

1.4.14 Markus Achtelik 19 

ASLam Framework 

[1] S. Leutenegger et.al., “Keyframe-Based Visual-Inertial SLAM Using Nonlinear Optimization”, RSS 2013 
[2] A. Geiger et.al., “Efficient Large Scale Stereo Matching”, ACCV 2010 
[3[ A. Hornung et.al, “Octomap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees” ,Aut. Rob. 2013 
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Outline 

Planning Control 

State  
Estimation 

Perception 

position, velocity, attitude … 

uncertainty, required motion 
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Motion and Uncertainty Aware Path Planning 

1.4.14 Markus Achtelik 22 
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Random Sampling Based Planning Methods 

Video: S. Karaman 
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!  Extends sample-based algorithms to handle 
measurement uncertainty 

!  Searches over candidate paths as an extension of the 
RRT* framework 
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Rapidly-exploring Random Belief Trees (RRBT) 

[Bry and Roy, ICRA 2011] 
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start 

goal 

EKF state 

MAV dynamics incorporated 

need excitation ! 

Motion Aware Path Planning 

[Achtelik et al., ICRA 2013] 
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Results: Optimized vs. Direct Path 

remaining states can be set constant4. This is ok since we
are only interested in the evolution of the state covariance
during filter execution along the new edge. The initial state
covariance for the filter is simply n.⌃. During propagation
along enew, the path is also checked for possible collisions
by taking the state covariance into account. This corresponds
to the PROPAGATE(e, n) function in [9].

We define the cost for flying along an edge e as
R
kak (in-

tegral over the squared norm of the acceleration), minimizing
the energy necessary to reach the goal (c.f. Section III-B).
This seems to contradict with the need of excitation of the
vehicle for its states to stay observable. However, this is a
trade-off between excitation of the vehicle and reducing the
uncertainty and energy efficiency. That is, the vehicle gets
just as much excited as necessary to reach the goal within
the defined uncertainty region.

On success of the previous propagation step, as for RRG,
new edges are created from vnew to vnearest, from vnew to
Vnear and from Vnear to vnew. This time, exact connections
are created by fixing all constraints in Eq. (21). Whenever
an outgoing edge is added to an existing vertex, all its belief
nodes are added to a search queue which is then exhaustively
searched. Its APPENDBELIEF() function (c.f. [9]) uses the
methods discussed in Section III-D to decide if a belief gets
added to a state vertex (Eq. (28)) and if it dominates existing
beliefs (Eq. (25)) which can be removed in that case.

Similarly to the approach in [17], we want to reach the
goal state exactly and centered in the goal region because
that region also defines the maximum uncertainty at the goal.
Therefore, as long as there exist no edges to or from the
goal state, we explicitly add the goal state to the set of near
vertices Vnear at each iteration of the RRBT algorithm.

IV. RESULTS

In the following, we show the results of the methodology
we described before and were obtained from simulations. We
pick a few representative states of our state estimation filter
and show how our proposed method improves its estimates.
The setup is the following: we want to fly the MAV from a
starting location along the x-axis to a goal in 10 m distance.
This direct path and the resulting path from our method can
be seen in Fig. 3.

Fig. 3: The direct path and the path computed by our proposed method for
a distance of 10 m from the start with the position uncertainty visualized
(blue) to the goal reagion (orange)

We set an initial state covariance that we obtained during
real experiments with our framework described in [4]. We

4This would be states like inter sensor calibration or sensor biases and
do not change with the vehicle’s dynamic

simulate the system inputs (acceleration, angular velocity)
and measurements of our state estimation framework (Sec-
tion II-A) with the values computed in Section II-B along the
partial paths. We simulate a measurement in 3DoF position
and 3DoF attitude. We assume a constant measurement
uncertainty here for simplicity, although, since the presented
approach is a sampling based technique, different measure-
ment uncertainties could be incorporated.
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Fig. 4: Comparison of the evolution of uncertainty of the visual scale over
time for the direct path (red) and the optimized path (blue).

Fig. 4 shows the evolution of the uncertainty of the
visual scale along the direct path and the optimal path. The
uncertainty is not only significantly lower for the optimal
path, but also converges faster. This is very important as
the visual scale directly influences the uncertainty and the
quality of the position estimate. This becomes important
when the vehicle moves further away from its origin since
the visual scale influences the position estimate multiplicative
(c.f. Eq. (6)). As a result, even if the position was measured
correct and without any drift, the position uncertainty grows
with growing distance to the origin if the visual scale is
uncertain. This is reflected in Fig. 5: in the top left, the
uncertainty of the position in the x-axis for the optimal path
(blue) p

x

decreases until t = 5 s, which corresponds to the
improvement of the visual scale uncertainty in Fig. 4 due to
excitation of the system. After t = 5 s, the visual scale has
converged and since the system moves away from the origin
(Fig. 5,bottom left), the uncertainty for p

x

starts growing
again. The same applies to the direct path (red), and due
to the lack of excitation, the described behaviour happens
notably faster. Since the trajectories for p

y

(bottom right) stay
close to 0 on the right side of Fig. 5, both the uncertainty (top
right) for the direct and the optimal path decrease, while the
optimal path is performing remarkably better than the direct
path.
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Fig. 5: Behaviour of the uncertainty for the direct path (red) and the optimal
path (blue) in position for the x-axis (left) and the y-axis (right). Since the
visual scale error is multiplicative, the uncertainty of the position grows after
the initialization phase with increasing distance to the origin. The trajectory
in the y axis stays close to zero and therefore uncertainty decreases.
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are only interested in the evolution of the state covariance
during filter execution along the new edge. The initial state
covariance for the filter is simply n.⌃. During propagation
along enew, the path is also checked for possible collisions
by taking the state covariance into account. This corresponds
to the PROPAGATE(e, n) function in [9].

We define the cost for flying along an edge e as
R
kak (in-

tegral over the squared norm of the acceleration), minimizing
the energy necessary to reach the goal (c.f. Section III-B).
This seems to contradict with the need of excitation of the
vehicle for its states to stay observable. However, this is a
trade-off between excitation of the vehicle and reducing the
uncertainty and energy efficiency. That is, the vehicle gets
just as much excited as necessary to reach the goal within
the defined uncertainty region.

On success of the previous propagation step, as for RRG,
new edges are created from vnew to vnearest, from vnew to
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an outgoing edge is added to an existing vertex, all its belief
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starting location along the x-axis to a goal in 10 m distance.
This direct path and the resulting path from our method can
be seen in Fig. 3.
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real experiments with our framework described in [4]. We

4This would be states like inter sensor calibration or sensor biases and
do not change with the vehicle’s dynamic

simulate the system inputs (acceleration, angular velocity)
and measurements of our state estimation framework (Sec-
tion II-A) with the values computed in Section II-B along the
partial paths. We simulate a measurement in 3DoF position
and 3DoF attitude. We assume a constant measurement
uncertainty here for simplicity, although, since the presented
approach is a sampling based technique, different measure-
ment uncertainties could be incorporated.
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Fig. 4 shows the evolution of the uncertainty of the
visual scale along the direct path and the optimal path. The
uncertainty is not only significantly lower for the optimal
path, but also converges faster. This is very important as
the visual scale directly influences the uncertainty and the
quality of the position estimate. This becomes important
when the vehicle moves further away from its origin since
the visual scale influences the position estimate multiplicative
(c.f. Eq. (6)). As a result, even if the position was measured
correct and without any drift, the position uncertainty grows
with growing distance to the origin if the visual scale is
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decreases until t = 5 s, which corresponds to the
improvement of the visual scale uncertainty in Fig. 4 due to
excitation of the system. After t = 5 s, the visual scale has
converged and since the system moves away from the origin
(Fig. 5,bottom left), the uncertainty for p
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starts growing
again. The same applies to the direct path (red), and due
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close to 0 on the right side of Fig. 5, both the uncertainty (top
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Obstacle Avoidance 
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!  Map construction from fly- 
over in safe altitude 
“approach and land” 

!  Point clouds from VSLAM 
!  Inserted as “laser-scans”  

into occupancy grid 
!  " Obstacle-lookups and  

covariance computation  
during RRBT steer- and  
propagation phase 
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Field Tests 

[Bing Maps] 
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Field Tests – Map Generation 
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Field Tests – Map Generation 
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Tests with featureless areas 
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Tests with featureless areas 
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Planning and Exploration 

[Bircher, Alexis 2014] 
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Outlook – Inspection Tasks in Industry  
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Sensors and Illumination Integrated on  
Hex-Rotor  

laser scanner 

stereo camera system 

additional camera 

additional camera 
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●  System/integrator:&Alstom&InspecDon&RoboDcs&
●  PlaRorm/host:&ETHZ&
●  Benchmark/environment:&realisDc&set?up&on&
&&&&&&an&industrial&infrastructure,&e.g.&pipework&and&
&&&&&&infrastructure&for&energy?/fuel?/operaDng&
&&&&&&material&supply,&tanks&and&storages&
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Challenge/Chart/
call&open:&

Apr.&1st&–&Jun.&30th&2014&



EuRoC&in&a&Nutshell&•&13&October&2013&EuRoC&in&a&Nutshell&

www.euroc$project.eu&
/
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!  Open source software frameworks: 
http://www.asl.ethz.ch/research/software  
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Thank you for your Attention! 


